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Abstract. Pressure-induced elastic instabilities are investigated in the prototypic ionic and
covalent solids (MgO, CaO, SiO2 and Si) using generalized elastic stability criteria based on
the elastic stiffness coefficients(cij ) which are determined directly from stress–strain relations.
From first-principles computer simulations of the instabilities, we demonstrate the validity and
importance of the generalized criteria relative to the conventional criteria in describing the crystal
stability under hydrostatic pressure in relation to the real structural transformations. We examine
systems for which the two phases can be related by a simple deformation, and in all cases we
show that the generalized elastic stiffness coefficient associated with that deformation softens
toward the transition. The shear stability criterion(c44 > 0) bounds the first-order B1–B2 phase
transition pressure from above and below in MgO and CaO, suggesting a wide pressure regime
of metastability, whereas the tetragonal shear stability criterion((c11 − c12)/2 > 0) predicts
precisely the second-order rutile-to-CaCl2 transition in SiO2. The high-pressure elastic behaviour
of diamond structure Si is studied in detail. A tetragonal shear instability corresponding to its
transformation to theβ-Sn structure should occur in diamond structure Si at a pressure of
101 GPa, compared to the experimental value of 9 to 13 GPa for the transition pressure.

1. Introduction

Mechanical stability of homogeneous crystals has long been a subject of extensive theoretical
and computational investigation. Born initiated the systematic study of crystal stability
under load [1]. The well-known Born stability criteria are a set of conditions on the elastic
constants (Cij ) which are related to the second-order change in the internal energy of a
crystal under deformation. Later, Hill and Milstein suggested that the convexity of the
internal energy in a crystal under stress is coordinate dependent and hence the ranges of
Born stability are strongly sensitive to the choice of coordinates [2–4]. By considering the
external work done to second order (i.e. in a classical treatment), they found significant
quantitative and qualitative differences in the ranges of Born and classical stability [5].
However, they did not point out clearly the fact that the Born conditions are valid only for
the special case of zero stress.

It has been recently suggested that the Born conditions are valid only for the stability
analysis of an unstressed lattice and not for the stressed lattice [6, 7]. The stability criteria
have been formulated in terms of the elastic stiffness coefficients (cij ) which govern the
proper stress–strain relations at finite strain by considering both the internal energy and the
external work done during deformation [6, 7]. This suggests that the stability analyses
depend mainly on a proper generalization of the zero-stress elastic constants valid for
arbitrary stress [8, 9]. The generic features of these criteria relative to the conventional
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criteria have been demonstrated successfully for the cases of hydrostatic tension and
compression, uniaxial tension, and lattice expansion by molecular dynamics simulations
[6, 7]. However, there exist relatively few demonstrations of precise identification of the
elastic instability which are closely related to the structural transformation. A tetragonal
shear instability was suggested to be associated with the pressure-induced phase transition
in silicon from the diamond structure to theβ-Sn structure [10]. Similarly a shear instability
was predicted to cause amorphization in zinc-blende structure SiC under hydrostatic
compression [11].

In all of the previous demonstrations [6, 7, 10, 11] of the validity and importance of
the generalized elastic stability criteria for arbitrary stress, the elastic constants (Cij ) were
first calculated and their values were used to estimate the elastic stiffness coefficients (cij )
which were, in turn, used to determine the instability of the crystal. Here we calculate
these coefficients (cij ) directly from stress–strain relations [8, 12, 13]. More applications
of these stability criteria are required in systems where the elastic instabilities suggested by
the stability criteria can be related directly to the structural phase transitions.

We have recently determined the high-pressure structural and elastic properties of three
oxides, MgO, CaO and SiO2, from first-principles computer simulations based on the plane-
wave pseudopotential method within the local density approximation [12, 15]. The elastic
stiffness coefficients (cij ) calculated from stress–strain relations under external pressure [12]
are the appropriate elastic quantities (equivalent toBij used in reference [6, 7, 9]) which
enter into the generalized stability criteria. Also, enthalpy (zero-temperature free energy)
considerations suggest that MgO and CaO should transform from the low-pressure rock-
salt (B1) structure to the high-pressure CsCl (B2) structure at pressures of 451 and 58 GPa,
respectively, whereas SiO2 shows a structural transformation from the tetragonal rutile phase
(stishovite) to the orthorhombic CaCl2 phase at about 47 GPa. Here we extend these high-
pressure elasticity calculations further and analyse the pressure-induced elastic instabilities
in these systems (MgO, CaO and SiO2) and also in diamond structure Si in relation to the
pressure-induced structural transformations.

2. Elastic stability criteria

The well-known Born elastic stability criteria can be derived by expanding the internal
energy in the strain and by requiring convexity of the energy [1]. Three generally accepted
elastic stability criteria for a cubic crystal [6, 9] are

C11+ 2C12 > 0 C44 > 0 C11− C12 > 0 (1)

which are connected to the bulk, shear and tetragonal shear moduli respectively and are
referred to as spinodal, shear and Born criteria, respectively. Here theCij are the elastic
constant tensors (in Voigt notation) which are derived from the change in the internal energy
under deformation.

The Born elastic stability criteria have been shown to be valid only for the special case
of zero stress. The generalization of the stability criteria to the non-zero-stress case can
be done by formulating the stability conditions in terms of the elastic stiffness coefficients
which govern the proper stress–strain relations at finite strains [6, 7, 9]. The relevant elastic
stiffness tensorcijkl (which is denoted byBijkl in references [6, 7, 9]) is defined as

cijkl =
(
∂σij (x)

∂ekl

)
X

(2)

whereσij and ekl are the applied stress and Eulerian strain tensors, andX andx are the
coordinates before and after the deformation. For the case of isotropic stress (i.e. under
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hydrostatic pressureP ) [8, 9], we have

cijkl = Cijkl + P
2
(2δij δkl − δilδjk − δikδjl) (3)

where

Cijkl =
(

1

V (x)

∂2E(x)

∂eij ∂ekl

)
X

. (4)

The notationCijkl used here to denote the second-order derivatives with respect to the
infinitesimal strain (Eulerian) variables should not be confused with the same notation used
by several authors [7, 8, 9] to represent the elastic constants defined with respect to the
finite-strain (Lagrange) coordinates. It should be noted that the elastic stiffnessescijkl are
independent of the choice of strain variables. The elastic stiffness tensorcijkl provides a
generalization of the zero-stress elastic constant tensor valid under arbitrary stress [8].

For a cubic crystal under hydrostatic pressure, the generalized elastic stability criteria
[6, 7] in analogy to the conventional criteria (equation (1)) are

c11+ 2c12 > 0 c44 > 0 c11− c12 > 0. (5)

In the case of hydrostatic pressure, thecij (in Voigt notation) are related to theCij defined
with respect to the Eulerian strain variables by

c11 = C11 c12 = C12+ P c44 = C44− P
2
. (6)

The finite-load stability conditions (equation (5)) for a cubic crystal reduce to the Born
stability criteria in the limit of vanishing load.

3. Computational details

The calculations are performed using the plane-wave pseudopotential method within the
local density approximation (LDA) [15]. The optimized, norm-conserving, non-local
pseudopotentials generated by theQC-tuning method are used [16, 17]. The finite plane-
wave basis-set corrections [18] to total energies and stresses are included so that the corrected
total energy and stress differences are converged to better than 0.1 meV and 0.02 GPa per
unit formula respectively. These details for MgO, CaO and SiO2 have been given elsewhere
[12, 14]. For silicon, a plane-wave basis set with a 300 eV cut-off is used to expand
the electronic wavefunctions at ten specialk-points [19]. The Pulay stress is about 0.6
GPa at equilibrium volume. A higher number ofk-points are required in the case of the
deformed lattices to derive elastic moduli. The appropriate symmetry of the crystal structure
is enforced on the electronic charge density and wavefunctions throughout the simulations.

For a given isotropic pressureP , the total stress is

σij = σ cij + σP − P (i, j = 1, 2, 3) (7)

whereσ cij is the self-consistent stress tensor [20] andσP is the isotropic Pulay stress [18].
The elastic stiffness coefficients (cij ) are determined from the computation of the stresses
generated by small deformations of the equilibrium unit cell (equation (2)). It is more
direct to calculate the elastic moduli using stress–strain relations than using strain-energy
density. We vary the magnitude of the strain and derive the elastic moduli from the resulting
(non-linear) stress–strain relation [12]. In order to include coupling between strains and
vibrational modes, the ionic positions are re-optimized in the strained lattice.
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4. Ionic compounds

4.1. MgO

On the basis of the thermodynamic criterion of equality of enthalpies (H = E+PV ) at zero
temperature, MgO is predicted to exhibit a pressure-induced structural transformation from
the low-pressure NaCl structure (B1 phase) to the high-pressure CsCl structure (B2 phase)
at 451 GPa [12]. This prediction is in consistent with the experimental observation that the
B1 phase is stable, at least up to 230 GPa [21]. The exceptionally wide stability field of
MgO makes study of its elastic instability an important test of the validity and importance
of the finite-load stability criteria.

We have recently determined the three elastic stiffness coefficients,c11, c12 andc44, of
the B1 structure MgO from the stress–strain relations up to 150 GPa [12]. Here, we calculate
these quantities over a much wider pressure range to study elastic instability in MgO. Both
bulk ((c11 + 2c12)/3) and tetragonal shear((c11 − c12)/2) moduli increase strongly with
pressure suggesting that the B1 structure MgO is increasingly stable against spinodal and
tetragonal shear deformations. However, as shown in figure 1(a),c44 increases initially with
increasing pressure, becomes maximum at about 350 GPa, then decreases gradually to zero
at about 1400 GPa, and thereafter becomes increasingly negative. This implies that a shear
instability should occur in the B1 phase of MgO at around 1400 GPa.

The following shear strain:

ε = −
( 0 e e

e 0 e

e e 0

)
(8)

is used to evaluatec44. Here, the strained lattice vectorsa′ are related to unstrained vectors
a by a′ = (I+ ε)a, whereI is the identity matrix. If the initial lattice is B1, then a strain
of e = 0.2 effects a transformation to B2 phase.

To test this stability we deform the primitive cell of the B1 phase with a small shear
strain (e = 0.01) defined by equation (8) at several pressures up to 1600 GPa and test
whether the applied strain grows under structural (cell) relaxation following theab initio
constant-pressure relaxation method [22]. At all pressures below 1400 GPa, the deformed
lattice regains its original (B1) phase (i.e.e decreases from 0.01 to 0.0) whereas at pressures
above 1400 GPa, the applied strain grows eventually to the value ofe = 0.2. This shows
that the shear instability should occur at around 1400 GPa; this is the pressure at whichc44

vanishes, consistent with the prediction of the generalized stability criteria.
In analogy to the shear instability which occurs in the B1 phase in MgO under

compression, one should expect a similar instability in the B2 phase under decompression.
As illustrated in figure 1(a), the elastic constantc44 of B2 structure MgO vanishes at about
57 GPa. The instability in the B2 lattice at 57 GPa under decompression (release of the
applied pressure) is supported by the structural simulation of the slightly deformed cubic
primitive cell of the B2 phase with the shear strain (equation (8)) at several pressures.

The value of the elastic constantC44 of the B1 phase derived from the internal energy
(1E/V = 6C44e

2), does not soften with pressure (figure 1(a)) indicating the absence of the
shear instability in MgO (unless it occurs at relatively much higher pressure). However,C44

of the B2 phase vanishes at about 37 GPa which is below the pressure of 57 GPa at which
c44 is zero, and the simulation of the instability supports the value of 57 GPa. The stability
limit of MgO predicted by the generalized criterion (c44 > 0) which differs significantly
from that predicted by the conventional criterion (C44 > 0) is consistent with the structural
simulation.
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Figure 1. (a) The pressure variation ofc44 andC44 for the B1 and B2 phases of MgO. The
arrow indicates the B1–B2 transition pressure (PT ) predicted by thermodynamic equality of
enthalpies. (b) The relative enthalpy of the deformed B1 structure of MgO versus the shear
strain (e) at different pressures (indicated by numbers, in GPa). The solid circles represent the
relative enthalpies of the optimized structures. Note that ate = 0.2, the strained B1 lattice has
undergone a volume contraction of 10%, and thus represents B2 at a higher pressure.

When the magnitude of the strain,e, takes the value of 0.2 under simulation (at pressures
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above 1400 GPa) of the slightly deformed B1 lattice with the shear strain (equation (8)),
the resulting structure is equivalent to the B2 phase, i.e. the primitive cell becomes cubic.
In other words, the rhombohedral primitive cell of the B1 phase (Fm3m space group) can
be changed into the cubic cell of the B2 phase (Pm3m symmetry) by a compression along
the body diagonal [111] direction, i.e. the change of symmetry can be induced by the shear
deformation defined by equation (8). (The [110] direction in B1 becomes the [100] direction
in B2, but the [111] direction connects the same atoms in both structures, and hencec44 is
the relevant stiffness constant in each case.)

The softening ofc44 in both phases suggests that the predicted shear instability in MgO
may be related to a certain extent to the real B1–B2 phase transition mechanism. The elastic
stiffness coefficientc44 of MgO remains high for both the B1 and B2 phases at the transition
pressure of 451 GPa but it vanishes at pressures beyond the transition. This indicates that
the elastic stability is insufficient to determine precisely the thermodynamic stability and
hence the first-order B1–B2 phase transition in MgO. However, the elastic stability criterion
can still be used to place bounds on the transition pressure for the first-order phase transition
since the corresponding change of symmetry can be induced by an elastic instability [10].

The shear instability (c44 = 0) follows the B1–B2 phase transition along the specific
reaction path of the homogeneous deformation which involves an activation barrier. We
calculate the activation barrier along the reaction path described by the shear strain (equation
(8)) from e = 0.0 (the B1 phase) toe = 0.2 (the equivalent B2 phase) at different pressures
(figure 1(b)). The barrier is a measure of the relative enthalpy (H −He=0) of the deformed
primitive cell of B1 structure MgO with respect to the unstrained cell (e = 0.0). At 250 GPa,
both the strained lattice undere = 0.2 (i.e. equivalent to the B2 phase) and the optimized
B2 phase possess higher energy than the optimized B1 phase does, making the B1 phase
stable which is consistent with both elastic and thermodynamic criteria. At 650 GPa, a small
activation barrier exists suggesting that the B1 phase is still elastically stable. However,
the energies of both the equivalent and optimized B2 phases are slightly lower than that
of the B1 phase. Correspondingly, the thermodynamic requirement of equality of free
energies which ignores essentially the presence of a kinetic barrier predicts that the B1
phase should transform to the B2 phase at some pressure (i.e. at 451 GPa) between 250 and
650 GPa. As shown in figure 1(b), the barrier height decreases with increasing pressure,
and both of the equivalent and optimized B2 phases become more stable energetically at
higher pressures. Finally at much higher pressures (such as 1600 GPa) beyond 1400 GPa
at which c44 becomes zero, the activation barrier associated with the shear strain vanishes.
This implies that the shear instability should result in the structural transformation from the
B1 to the B2 phase in MgO at those pressures. The elastic instability thus gives a higher
transition pressure (1400 GPa) than the thermodynamic prediction of 451 GPa [12] for the
case of the compression. On the other hand, for the case of the hydrostatic decompression
of the B2 phase, the shear instability gives a lower pressure (57 GPa) than the free-energy
prediction of 451 GPa. Thus, the elastic stability criteria should bound the pressure-induced
B1–B2 phase transition in MgO from above and below.

4.2. CaO

We have recently found that the B1 phase of CaO becomes thermodynamically unstable
at 58 GPa in excellent agreement with experimental observation at 53–70 GPa [23–25].
The value ofc44 for the B1 phase as derived from the stress–strain relation vanishes at
177 GPa whereas that of the B2 phase becomes zero at−1.5 GPa (figure 2). Thesec44 = 0
conditions determine the shear instability in CaO and should correspond to the B1–B2
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Figure 2. The pressure variations ofc44 andC44 for B1 and B2 phases of CaO.

structural transformation in each direction at about 177 and−1.5 GPa, compared to the
pressure of 58 GPa obtained by equating the enthalpies of the two phases. As in the case
of MgO, the elastic stability criteria provide the upper (177 GPa) and lower (−1.5 GPa)
bounds on the transition pressure of CaO. The large discrepancy between the transition
pressures predicted by the elastic instability and thermodynamic criteria can be interpreted
as the presence of a substantial activation barrier to this particular transition route.

The value forC44 for the B1 phase derived from1E remains high over the pressure
range studied and is likely to vanish at much higher pressure, which is not consistent with
the structural simulation of the instability (figure 2). However, bothc44 = 0 andC44 = 0
should give similar values of the lower limit for the transition pressure since the relevant
pressure is very close to zero (figure 2).

5. Covalent compounds

5.1. SiO2

The structural transformation from the rutile phase (stishovite) to the CaCl2 phase in SiO2
serves as a good example of tetragonal shear instability under hydrostatic pressure. We
have recently predicted that silica transforms from the tetragonal (rutile) to the orthorhombic
(CaCl2) phase at 47 GPa [14] in agreement with the Raman spectroscopic observation at
50± 3 GPa [33]. Figure 3 shows the pressure variation of the tetragonal shear modulus
((c11 − c12)/2) of both the rutile and CaCl2 phases of silica. The modulus of the rutile
structure silica softens slowly initially and more rapidly with increasing pressure, eventually
vanishing at about 47 GPa at which pressure the tetragonal shear modulus of the CaCl2 phase
also vanishes with decreasing pressure. However, the modulus ((C11 − C12)/2) from the
strain-energy density vanishes at about 49 and 45 GPa, respectively, for the rutile phase
under compression and the CaCl2 phase under decompression. It is to be noted that the
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Figure 3. The pressure variation of the tetragonal shear moduli for rutile and CaCl2 structure
SiO2.

calculated modulus ((c11− c12)/2) does not soften with pressure unless the ions are allowed
to relax in the deformed cell. Moreover, the frequency of the rutile B1g mode vanishes at
a much higher pressure of 86 GPa, so the B1g mode would become unstable and induce
the structural transformation of stishovite to CaCl2 phase at this much higher pressure,
compared to the actual pressure of 47 GPa. Thus, the rutile-to-CaCl2 phase transition can
be thought of as an elastic instability which arises from the strong coupling between elastic
constants and the soft rutile B1g mode [14].

We minimize the enthalpy with respect to the lattice parameters and ion positions of
the orthorhombically strained unit cell of the rutile phase at several pressures. Under full
structural optimization, at pressures of 0, 20 and 40 GPa, the strained unit cell finally relaxes
back to the tetragonal (rutile) phase, whereas at 50 GPa and higher pressures it retains the
orthorhombic (CaCl2) phase. Thus full structural optimization of the strained tetragonal
lattice of the rutile phase and orthorhombic lattice of the CaCl2 phase at several pressures
demonstrates that the elastic instability should occur at 47 GPa and cause the second-order
rutile-to-CaCl2 phase transition in silica. Unlike in the cases of MgO and CaO, both the
thermodynamic and generalized elastic criteria predict exactly the same transition pressure
since the tetragonal shear modulus actually vanishes at the transition point. In this case the
elastic instability is the mechanism by which the transformation occurs. Both the upper and
lower bounds on the transition pressure suggested by the criteria based on the conventional
elastic constants are found to be inconsistent with the structural simulation and also with
thermodynamic prediction.

5.2. Si

A number of experimental and theoretical investigations have found that silicon transforms
from the diamond–cubic structure to a tetragonalβ-Sn structure at 9 to 13 GPa [10, 26, 27].
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Table 1. The lattice constanta (in Å), elastic stiffness coefficientscij (in GPa), isotropic
bulk and shear moduli,K and G respectively (in GPa), and elastic anisotropy factorA =
1− 2c44/(c11− c12) of diamond structure Si.

P (GPa) a c11 c12 c44 K G A

0 5.3926 165.6 66.9 77.2 99.8 64.5 0.564
∗ 5.4310 167.5 65.0 80.1 99.2 67.0 0.563
2 5.3569 175.4 77.0 78.4 109.8 65.0 0.593
5 5.3081 186.1 89.8 79.3 121.9 64.9 0.647
10 5.2374 204.4 110.3 80.1 141.7 64.7 0.702
15 5.1773 220.6 130.0 79.4 160.2 63.4 0.753

∗ Experimental values in ambient conditions [28, 34].

Here we determine the pressure variation of the full elastic stiffness tensorcij from direct
computation of the stress tensors generated by small strains on the fully optimized cubic
structure silicon with simultaneous ionic relaxation (table 1). Our calculated static values
of cij at zero pressure are in excellent agreement with experimental [28] and previous
pseudopotential [29–32] results (table 1). Bothc11 and c12 increase monotonically with
pressure whereasc44 increases initially followed by a gradual decrease with pressure. The
diamond structure silicon exhibits high elastic anisotropy at zero pressure and the degree of
the anisotropy increases with pressure (table 1).
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Figure 4. The pressure variation of different moduli for diamond structure Si.

As shown in figure 4, we find that the tetragonal shear modulus ((c11−c12)/2) decreases
gradually with pressure and vanishes at about 101 GPa, whereasc44 increases initially with
pressure and soon starts to decrease finally to zero at the slightly higher pressure of 107 GPa.
This implies that a tetragonal instability should occur at the much higher pressure of 101 GPa
compared to the thermodynamic transition pressure in diamond structure Si in relation to the
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observed diamond–β-Sn structural transformation as verified by the structural relaxation of
the cubic lattice deformed with a small tetragonal strain. However, the conventional criteria
in terms of elastic constantsCij suggest that a shear instability (C44 = 0) would occur
before the tetragonal instability ((C11−C12)/2= 0) at much higher pressures (figure 4), but
the predicted instability (C44 = 0) is not associated with the cubic-to-tetragonal symmetry
change of the transition. Kazukiet al [10] have also found that a tetragonal shear instability
would occur and cause the diamond structure silicon to transform to theβ-Sn structure at
105 GPa by using the appropriate elastic parameters,c11 andc12, obtained from the values of
the elastic constants (Cij ), using the Tersoff potential. The relatively much higher transition
pressure for the transition from the diamond–cubic to theβ-Sn structure suggested by elastic
instability implies the existence of an activation barrier [10].

6. Discussion

We have examined four cases of transitions between phases related by continuous
deformation. In each case, the elastic stiffness modulus associated with that deformation is
observed to soften on approaching the transition and beyond.

In each case an elastic instability is predicted. In SiO2 the instability occurs at the
transition point in both high- and low-pressure phases, and we are justified in stating that
the instability is the transition mechanism. In MgO, CaO and Si the elastic instability
occurs only at pressures beyond that required for the transition—in these cases the transition
mechanism is more complex than a simple elastic deformation, but the softening of the
elastic moduli gives a strong hint as to the possibility of a phase transition.

There is an analogy here with the B1g mode in SiO2, which softens, though not to zero,
on approach to the transition. Both softening phonon modes and softening elastic stiffnesses
are indicators of an upcoming phase transition. This shows that instabilities predicted on
the basis of the elastic criteria (equation (5)) formulated in terms of the elastic stiffness
coefficients (cij ) can be physically relevant.

The elastic predictions for the transition pressure differ significantly from the
thermodynamic predictions in the cases of MgO, CaO and Si but the two types of prediction
coincide for the case of silica. The B1–B2 phase transitions in MgO and CaO [12] and
the diamond–β-Sn transition in Si [10] are of first order (a finite jump in volume at the
transition) whereas the rutile-to-CaCl2 phase transition in SiO2 [14] is of second order (no
discontinuity in the volume at the transition). This suggests that for the first-order phase
transitions, the elastic stability does not imply thermodynamic stability, and hence the elastic
stability criteria can determine only the pressure regimes where a given phase is stable or
unstable with respect to a given elastic deformation, thus bounding the transition pressure
from above and below.

Experimental observations of the first-order transitions tend to be close to the
thermodynamic prediction since it is likely that the presence of any lattice defect in
the real systems should destroy the constraints (the kinetic barriers) along the path of
the homogeneous deformation [7, 10]. On the other hand, for the second-order phase
transition, the predicted elastic instability actually drives the structural transformation and
hence determines the transition pressure precisely.

For the case of isotropic stress, the elastic stiffness coefficients (cijkl) possess the full
Voigt symmetry of the zero-stress elastic constants, i.e.cijkl is symmetric with respect to the
index interchanges (i, j ), (k, l), (ij, kl), and reduce both the equation of motion and stress–
strain relations to the simple forms of the zero-stress case [8]. The elastic stiffness tensor,
cijkl (cαβ , in Voigt notation), are the appropriate elastic parameters which determine not only
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the acoustic velocities and Cauchy relations but also determine the stability of a crystal under
hydrostatic pressure. Moreover, although only hydrostatic pressure is investigated here, the
elastic stability criteria expressed in terms of the elastic stiffness coefficients (cijkl) should
provide a generalization of the stability criteria valid under arbitrary stress [6, 7].
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